Answer: The standard change in Gibbs free energy for the given reaction is 4.33 kJ/mol
Step-by-step explanation:
For the given chemical equation:
![A(g)+2B(g)\rightleftharpoons C(g)+D(g)](https://img.qammunity.org/2020/formulas/chemistry/college/fcmjd9lxx5yz7smuilf206cksd0op4h97p.png)
The expression of
for the given reaction:
![K_p=(p_C* p_D)/(p_A* (p_B)^2)](https://img.qammunity.org/2020/formulas/chemistry/college/o4ipd2wb3kmvt64jct4uwm6r9ho07rvx5s.png)
We are given:
![p_A=8.00atm\\p_B=5.40atm\\p_C=6.90atm\\p_D=5.90atm](https://img.qammunity.org/2020/formulas/chemistry/college/o3jfxijn33tcr6lz59jxk4jdouuabkayxk.png)
Putting values in above equation, we get:
![K_p=(6.90* 5.90)/(8.00* (5.40)^2)\\\\K_p=0.174](https://img.qammunity.org/2020/formulas/chemistry/college/6msy6ss4ewsojerwns7xoniii3gci1tu37.png)
To calculate the standard Gibbs free energy, we use the relation:
![\Delta G^o=-RT\ln K_p](https://img.qammunity.org/2020/formulas/chemistry/college/m0ly973461210zbortkn3ps6lrmzr36zbb.png)
where,
= standard Gibbs free energy
R = Gas constant =
![8.314J/K mol](https://img.qammunity.org/2020/formulas/chemistry/college/746mbxazbiyt61x5px0umyuuc59b9j7u4i.png)
T = temperature =
![25^oC=[25+273]K=298K](https://img.qammunity.org/2020/formulas/physics/high-school/h3swi627jfkpg7vx7in8p5pe35bz1gwehq.png)
= equilibrium constant in terms of partial pressure = 0.174
Putting values in above equation, we get:
![\Delta G^o=-(8.314J/Kmol)* 298K* \ln (0.174)\\\\\Delta G^o=4332.5J/mol=4.33kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/7v3szpzf8oev1ysthjt2qn8iy3v01tb8ym.png)
Hence, the standard change in Gibbs free energy for the given reaction is 4.33 kJ/mol