Answer : The correct option is, (C)
![403.6cm^3](https://img.qammunity.org/2020/formulas/chemistry/college/tha16jy182xvhm9icibs3xofhxssd9o0vy.png)
Explanation :
The formula used for the volume expansion coefficient is:
![V_(final)=V_(initial)* (1+\gamma \Delta T)](https://img.qammunity.org/2020/formulas/chemistry/college/78fpzwu323i8zgeya30x1niggpf6k7tdnk.png)
where,
= final volume of mercury = ?
= initial volume of mercury =
![400.0cm^3](https://img.qammunity.org/2020/formulas/chemistry/college/bvbez86uvx5p5jpuw2yxy22kj5gv7118nn.png)
= volume expansion coefficient =
![180* 10^(-6)K^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/tp2eq06o7gimph8d7cvub9c556bh2hwnux.png)
= change in temperature =
![50^oC-0^oC=50^oC](https://img.qammunity.org/2020/formulas/chemistry/college/6y7wslybh2h8xjamcq4nf6ctrxdlqx4tvv.png)
Now put all the given values in the above formula, we get:
![V_(final)=400.0* [1+(180* 10^(-6)* 50)]](https://img.qammunity.org/2020/formulas/chemistry/college/1l1zdt85bq2o4rdf2yf7r8e0ovfmripdpw.png)
![V_(final)=403.6cm^3](https://img.qammunity.org/2020/formulas/chemistry/college/f0ycgyujyf8inr09582wl19aty9771b7bp.png)
Therefore, the final volume of mercury is
![403.6cm^3](https://img.qammunity.org/2020/formulas/chemistry/college/tha16jy182xvhm9icibs3xofhxssd9o0vy.png)