48.4k views
2 votes
Consider the Pythagorean Identity cos 2 ( θ ) + sin 2 ( θ ) = 1 cos2⁡(θ)+sin2⁡(θ)=1. Divide both sides of this identity by cos 2 ( θ ) cos2⁡(θ) and simplify the resulting equation. What is the result?

User Wingerse
by
9.2k points

1 Answer

1 vote

Answer:

Therefore we have another identity:


(cos^(2)\theta +sin^(2)\theta)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)


(1)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)

Explanation:

1) Considering the Pythagorean, or the Fundamental Trigonometric Identity Identity:


cos^(2)\theta +sin^(2)\theta =1

2)Let's divide both sides, the left and the right one by:


cos^(2)\theta*cos^(2)\theta

3) Since
cos^(2)\theta +sin^(2)\theta is equal to 1, then we can replace it. So


cos^(2)\theta +sin^(2)\theta =1\Rightarrow (cos^(2)\theta +sin^(2)\theta)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)\Rightarrow (1)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)

Therefore we have another identity:


(cos^(2)\theta +sin^(2)\theta)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)

User Petur Subev
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories