48.4k views
2 votes
Consider the Pythagorean Identity cos 2 ( θ ) + sin 2 ( θ ) = 1 cos2⁡(θ)+sin2⁡(θ)=1. Divide both sides of this identity by cos 2 ( θ ) cos2⁡(θ) and simplify the resulting equation. What is the result?

User Wingerse
by
8.2k points

1 Answer

1 vote

Answer:

Therefore we have another identity:


(cos^(2)\theta +sin^(2)\theta)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)


(1)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)

Explanation:

1) Considering the Pythagorean, or the Fundamental Trigonometric Identity Identity:


cos^(2)\theta +sin^(2)\theta =1

2)Let's divide both sides, the left and the right one by:


cos^(2)\theta*cos^(2)\theta

3) Since
cos^(2)\theta +sin^(2)\theta is equal to 1, then we can replace it. So


cos^(2)\theta +sin^(2)\theta =1\Rightarrow (cos^(2)\theta +sin^(2)\theta)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)\Rightarrow (1)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)

Therefore we have another identity:


(cos^(2)\theta +sin^(2)\theta)/(cos^(2)\theta*cos^(2)\theta)=(1)/(cos^(2)\theta*cos^(2)\theta)

User Petur Subev
by
7.8k points