39.6k views
2 votes
Rectangle ABCD is translated (x + 2, y − 3) and then rotated 180° about the origin. Complete the table to show the locations of A″, B″, C″, and D″ after both transformations.

Rectangle ABCD is shown. A is at negative 5, 1. B is at negative 5, 3. C is at negative 1, 3. D is at negative 1, 1.


A (− 5, 1) A″ ?
B (−5, 3) B″ ?
C (−1, 3) C″ ?
D (−1, 1) D″ ?
A) A″ (−2, −3), B″ (0, −3), C″ (0, 1), D″ (−2, 1)
B) A″ (−3, −2), B″ (−3, 0), C″ (1, 0), D″ (1, −2)
C) A″ (3, 0), B″ (3, 2), C″ (−1, 2), D″ (−1, 0)
D) A″ (3, 2), B″ (3, 0), C″ (−1, 0), D″ (−1, 2)

User Rolebi
by
5.1k points

2 Answers

2 votes

Answer: D) A″ (3, 2), B″ (3, 0), C″ (−1, 0), D″ (−1, 2)

User Zhifeng Hu
by
6.3k points
2 votes

Answer:

D

Explanation:

Rectangle ABCD has vertices A(-5, 1), B(-5, 3), C(-1, 3), D(-1, 1).

1. Rectangle ABCD is translated with the rule


(x,y)\rightarrow  (x + 2, y-3)

Then


  • A(-5,1)\rightarrow A'(-3,-2);

  • B(-5,3)\rightarrow B'(-3,0);

  • C(-1,3)\rightarrow C'(1,0);

  • D(-1,1)\rightarrow D'(1,-2).

2. Rotation 180° about the origin has the rule


(x,y)\rightarrow (-x,-y)

Then


  • A'(-3,-2)\rightarrow A''(3,2);

  • B'(-3,0)\rightarrow B''(3,0);

  • C'(1,0)\rightarrow C''(-1,0);

  • D'(1,-2)\rightarrow D''(-1,2).
User Inanda Menezes
by
4.9k points