Answer:
![(-1)/(18)](https://img.qammunity.org/2020/formulas/mathematics/college/9ik3skhbjggdqjbn31wdq0qb091uejqlic.png)
Explanation:
Given that x and y are implicitly as differentiable functions.
xequals=f(t), yequals=g(t),
![x^3+3t^2 =13,](https://img.qammunity.org/2020/formulas/mathematics/college/af8cp12k2tso7urspvgnkp93niiryto1if.png)
![2y^3-3t^2= 42](https://img.qammunity.org/2020/formulas/mathematics/college/ww273uxjw1xdaebhmwbi7unjseci587vos.png)
we have to get value of x and y at t =2
![x^3+3(4) = 13\\x =1\\2y^3-12 = 42\\y^3 = 27\\y=3](https://img.qammunity.org/2020/formulas/mathematics/college/wrzvgzpps1so9ko4sm3ykpet75ccua5424.png)
we have to find the slope of the curve at t=2
i.e. we have to find
![(dy)/(dx)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jx905kc27f885yo5rsnqco6uks6c8e5lqx.png)
=
at t=2
![x^3+3t^2 =13\\3x^2 (dx)/(dt) +6t = 0\\](https://img.qammunity.org/2020/formulas/mathematics/college/pq3jf9hrs5lsuysmuyz6wcma9zmuk9p6oh.png)
![2y^3-3t^2= 42\\6y^2 (dy)/(dt) -6t = 0\\](https://img.qammunity.org/2020/formulas/mathematics/college/bqpgxmk4drazfbgg207opikov1ewowio1a.png)
Substitute the values of x and y and also t in these equations to get
![3(1)^2 (dx)/(dt) +6(2) = 0\\(dx)/(dt) =-4\\6(3)^2 (dy)/(dt) -6(2)= 0\\(dy)/(dt)=(2)/(9)](https://img.qammunity.org/2020/formulas/mathematics/college/21xps9vitm42qymuwm4l5wrgl4hs67xxiy.png)
Slope =
![(2/9)/(-4)=(-1)/(18)](https://img.qammunity.org/2020/formulas/mathematics/college/4x9eiw8jgz6lkafvdhwflh1ult2vm601kr.png)