14.3k views
4 votes

√(6y+7)=5+√(y-3) \\I get how to begin this but have no clue how to solve for y.

2 Answers

4 votes

Answer:

y = 3 or y = 7

Explanation:


√(6y+7)=5+√(y-3)\\\\\text{Domain:}\\\\6y+7\geq0\ \wedge\ y-3\geq0\\\\y\geq-(7)/(6)\ \wedge\ y\geq3\Rightarrow\boxed{y\geq3}


6y+7=6y-18+25=6(y-3)+25\\\\\text{Substitute:}\ t=y-3,\ t\geq0\\\\√(6t+25)=5+√(t)\qquad\text{square of both sides}\\\\(√(6t+25))^2=(5+√(t))^2\\\\\text{use}\ (√(a))^2=a\ \text{and}\ (a+b)^2=a^2+2ab+b^2\\\\6t+25=5^2+2(5)(√(t))+(√(t))^2\\\\6t+25=25+10√(t)+t\qquad\text{subtract 25 from both sides}


6t=10√(t)+t\qquad\text{subtract}\ t\ \text{from both sides}\\\\5t=10√(t)\qquad\text{divide both sides by 5}\\\\t=2√(t)\qquad\text{square of both sides}\\\\t^2=(2√(t))^2\\\\t^2=4t\qquad\text{subtract}\ 4t\ \text{from both sides}\\\\t^2-4t=0\qquad\text{distribute}\\\\t(t-4)=0\iff t=0\ \vee\ t-4=0\\\\t=0\ \vee\ t=4


\text{return to substitution}\\\\y-3=0\ \vee\ y-3=4\qquad\text{add 3 to both sides}\\\\y=3\ \vee\ y=7

User Luke Baulch
by
7.9k points
6 votes

Answer:


√(6y+7) -√(y-3) =5\\(√(6y+7) -√(y-3) )^2=5^2\\√(6y+7) ^2+√(y-3) ^2-2√((6y+7)(y-3)) =25\\6y+7+y-3-25=2√((6y+7)(y-3)) \\7y-21=2√((6y+7)(y-3)) \\(7y-21)^2=(2√(6y^2-18y+7y-21) )^2\\49y^2+441-294y=4(6y^2-11y-21)\\49y^2+441-294y=24y^2-44y-84\\49y^2-24y^2+441+84-294y+44y=0\\25y^2-250y+525=0\\25(y^2-10y+21)=0\\y^2-10y+21=0\\y^2-7y-3y+21=0\\y(y-7)-3(y-7)=0\\(y-7)(y-3)=0\\y-7=0 or y-3=0\\y=7 ,y=3

Explanation:

User Gerasalus
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories