Answer:
Both end hinge-Pcr= 0.98 MN
Both end fix-Pcr=3.9 MN
Step-by-step explanation:
E= 200 GPa
L=2 m
b=7 cm =70 mm
The critical load given as
![P_(cr)=(\pi^2EI)/(L^2)](https://img.qammunity.org/2020/formulas/engineering/college/l6vtk06r16poqevc5bvhy7tlzec65szamp.png)
For square section
![I=(b^4)/(12)](https://img.qammunity.org/2020/formulas/engineering/college/t7sj96bad6y5cxinf8yykk9lg6f9xx3k5i.png)
![P_(cr)=(\pi^2E* (b^4)/(12))/(L^2)](https://img.qammunity.org/2020/formulas/engineering/college/fwrjp44bd8730rfubhvij0bu76fgt1lzv7.png)
Lets take column is hinge at the both ends :
Now by putting all the values
![P_(cr)=(\pi^2E* (b^4)/(12))/(L'^2)](https://img.qammunity.org/2020/formulas/engineering/college/jv5wtwssat4dsx8fg3hwo2n73g1pr2idry.png)
L'= L
![P_(cr)=(\pi^2* 200* 1000* (70^4)/(12))/(2000^2)](https://img.qammunity.org/2020/formulas/engineering/college/6tm9lhcp2i40sjhtari8rj0x4jsaui1nau.png)
Pcr=987371.6 N
Pcr= 0.98 MN
Therefore critical load = 0.98 MN
When both end fixed :
![P_(cr)=(\pi^2E* (b^4)/(12))/(L'^2)](https://img.qammunity.org/2020/formulas/engineering/college/jv5wtwssat4dsx8fg3hwo2n73g1pr2idry.png)
L' = 0.5 L
![P_(cr)=(\pi^2* 200* 1000* (70^4)/(12))/(1000^2)](https://img.qammunity.org/2020/formulas/engineering/college/cxtdu63osndyjpy4xygjv87t08wq90tilv.png)
Pcr=3.9 MN
Therefore critical load = 3.9 MN