Answer:
3.60342 seconds
Step-by-step explanation:
v = Initial velocity of snowball = 25 m/s
g = Acceleration due to gravity = 9.81 m/s²
= First angle = 75°
The second angle will be
![\theta_2=90-\theta_1=90-75=15^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/lfir0v5kavldlidpj14vrky6to2patp0do.png)
Horizontal speed for first throw
![v_(x1)=vcos\theta_1\\\Rightarrow v_(x1)=25* cos75\\\Rightarrow v_(x1)=6.47047\ m/s](https://img.qammunity.org/2020/formulas/physics/college/bzt6p91k4x22qgvyvzvzf4gy5xlkx7g1eo.png)
Horizontal speed for second throw
![v_(x2)=vcos\theta_1\\\Rightarrow v_(x2)=25* cos15\\\Rightarrow v_(x2)=24.14814\ m/s](https://img.qammunity.org/2020/formulas/physics/college/6mymw663hrq380y5qd9i04fiyn3qs5jlb6.png)
Horizontal range is given by
![R=(v^2sin(2\theta))/(g)\\\Rightarrow R=(25^2* sin(2* 75))/(9.81)\\\Rightarrow R=31.85\ m](https://img.qammunity.org/2020/formulas/physics/college/vjh4pbxmiugnbza2gljftqz52ev0dvk142.png)
Time period for first throw
![t_1=(R)/(v_(x1))\\\Rightarrow t_1=(31.85)/(6.47047)\\\Rightarrow t_1=4.92236\ s](https://img.qammunity.org/2020/formulas/physics/college/b2388d0u6ftrnnsqlalr6yxap0g7ftwcym.png)
Time period for second throw
![t_2=(R)/(v_(x1))\\\Rightarrow t_2=(31.85)/(24.14814)\\\Rightarrow t_2=1.31894\ s](https://img.qammunity.org/2020/formulas/physics/college/x4tmdq0f6100khq7eskww8rk0kqf7xylgf.png)
The time difference is
![t=4.92236-1.31894=3.60342\ s](https://img.qammunity.org/2020/formulas/physics/college/3tcza51us4soal0x9kbp444lj4idxs3j47.png)
The second ball should be thrown 3.60342 seconds later