Answer:
Part A-
![10.06^\circ](https://img.qammunity.org/2020/formulas/engineering/college/2ijf6i6iydz0ri4p4fulao1xz2z0mxmy56.png)
Part B- 0.1946ft
Step-by-step explanation:
Block A
Apply force equilibrium equation along x direction.
![\begin{array}{l}\\\sum {{F_x}} = 0\\\\{F_A} + {F_S} - 10\sin \theta = 0\\\end{array}](https://img.qammunity.org/2020/formulas/engineering/college/ivqpdsomm5f8venzxktwl0nekgclmz6xka.png)
Here,
} is friction force on block A and
}is spring force, and \theta is inclination angle.
By substitution
![0.14\,{N_A} + \left( {1.9x} \right)\,{\rm{lb}} \cdot {\rm{ft}} - 10\sin \theta = 0](https://img.qammunity.org/2020/formulas/engineering/college/61ewecyx93w2zdhnbfwa2l2ymnhablsgjk.png)
Similarly, apply force equilibrium equation along y direction.
![\begin{array}{l}\\\sum {{F_y}} = 0\\\\{N_A} - 10\cos \theta = 0\\\\{N_A} = 10\cos \theta \\\end{array}](https://img.qammunity.org/2020/formulas/engineering/college/k9ei9vnz9v9q4ksoq7ynryxox2s1fshxgh.png)
By substitution
![\begin{array}{l}\\0.14\,\left( {10\cos \theta } \right) + \left( {1.9x} \right) - 10\sin \theta = 0\\\\\left( {1.9x} \right) = 10\sin \theta - 1.4\cos \theta \\\end{array}](https://img.qammunity.org/2020/formulas/engineering/college/tbm8d7b38qdic74ow01t9cohy3dodknkmd.png)
Block B
Apply force equilibrium equation along x direction.
![\begin{array}{l}\\\sum {{F_x}} = 0\\\\{F_B} - {F_S} - 6\sin \theta = 0\\\end{array}](https://img.qammunity.org/2020/formulas/engineering/college/r7zb49kjb6q08h3ew3912wjysrr8ejrhsy.png)
By substitution
![0.24\,{N_A} - \left( {1.9x} \right) - 6\sin \theta = 0](https://img.qammunity.org/2020/formulas/engineering/college/ryosfuqmvnunp3w4ewf9odp6izls8f4qwh.png)
Apply force equilibrium equation along y direction.
![\begin{array}{l}\\\sum {{F_y}} = 0\\\\{N_B} - 6\cos \theta = 0\\\\{N_B} = 6\cos \theta \\\end{array}](https://img.qammunity.org/2020/formulas/engineering/college/bqjweh2bia1ez0z1f63o3epbrt14jj84cv.png)
![\begin{array}{l}\\0.24\,\left( {6\cos \theta } \right) - \left( {1.9x} \right) - 6\sin \theta = 0\\\\\left( {1.9x} \right) = 1.44\cos \theta - 6\sin \theta \\\end{array}](https://img.qammunity.org/2020/formulas/engineering/college/1kxqonasakdxx0o1wpohry4d5gchasbnn0.png)
Calculate the inclination angle when both blocks begin to slide.
![\begin{array}{l}\\10\sin \theta - 1.4\cos \theta = 1.44\cos \theta - 6\sin \theta \\\\16\sin \theta = 2.84\cos \theta \\\\\tan \theta = \frac{{2.84}}{{16}}\\\\\theta = {\tan ^( - 1)}\left( {\frac{{2.84}}{{16}}} \right)\\\end{array}](https://img.qammunity.org/2020/formulas/engineering/college/uwkbwrttsb3b3wwzaub1ecml6klhw9m1kv.png)
Calculate the change in length of the spring.
![\begin{array}{l}\\\left( {1.9x} \right) = 1.44\cos \left( {10.06^\circ } \right) - 6\sin \left( {10.06^\circ } \right)\\\\1.9x = 0.3697\\\\x = 0.1946\,{\rm{ft}}\\\end{array}](https://img.qammunity.org/2020/formulas/engineering/college/qaryuiapvojkaihf9w4xkmzp0suiode2ix.png)