Answer:
Time=2.72 seconds
Front wheel reactions= 1393 lb
Rear wheel reactions= 857 lb
Step-by-step explanation:
The free body diagram is assumed to be the one attached here
The mass, m of the car is
where W is weight and g is acceleration due to gravity
Taking g as
then
![M=\frac {4500}{32.2}=139.75 lbm](https://img.qammunity.org/2020/formulas/engineering/college/8l40pdgsks535efrcgwkkp9txzr5ogecry.png)
Considering equilibrium in x-axis
![Ma_G-f=0](https://img.qammunity.org/2020/formulas/engineering/college/mudk3ix24j078yn6znzv1a7qf3qvclakne.png)
![Ma_G-(\mu_g* 2N_B)=0](https://img.qammunity.org/2020/formulas/engineering/college/qr4dby8iweyqwtskd9qzznlvducer0dvvu.png)
![139.75* a_G-(0.3* 2* N_B)=0](https://img.qammunity.org/2020/formulas/engineering/college/7jqasgj6cfxonije1rzog4jwske3mcroe2.png)
![0.6N_B=139.75a_g](https://img.qammunity.org/2020/formulas/engineering/college/xn0e41ysv8g174sejm9xnazbrfw7fc6wfh.png)
![N_B=232.92a_g](https://img.qammunity.org/2020/formulas/engineering/college/79390150sq66int4caqq2cl4dxwwa5h4eg.png)
At point A using the law of equilibrium, the sum of moments is 0 hence
![-2N_B(6)+4500(2)=-Ma_G(2.5)](https://img.qammunity.org/2020/formulas/engineering/college/gm7t2ux5wu8qw551h9letdar2nrzdoms56.png)
![-12N_B+9000=-139.75a_G* 2.5](https://img.qammunity.org/2020/formulas/engineering/college/vfm2v3wd6ohipfmvyxu4ein8aexfcuxn8d.png)
![-12(232.92a_G)+900=-349.375a_G](https://img.qammunity.org/2020/formulas/engineering/college/her8064iifievlghfmvet9byuvbjpuytzg.png)
![a_g\approx 3.68 ft/s^(2)](https://img.qammunity.org/2020/formulas/engineering/college/lb5mmvlsoejw9jcqrsytdbywintm33vo4z.png)
The normal reaction at B is therefore
![N_B=232.92a_G=232.92* 3.68\approx 857 lb](https://img.qammunity.org/2020/formulas/engineering/college/pwry8zj3mkfoq41znokrzx8ba4ee8hrlgv.png)
Consider equilibrium in y-axis
![4500-2N_A-2N_B=0](https://img.qammunity.org/2020/formulas/engineering/college/5msxqiqk7i7d8zlag5gqx2vkwbiavdu2u8.png)
![N_A+N_B=2250](https://img.qammunity.org/2020/formulas/engineering/college/lu7452nrl6sqnr6txnektif0pdgelohotk.png)
![N_A+857=2250](https://img.qammunity.org/2020/formulas/engineering/college/zioc29d1vxuyavpcr26pzu12ckiq8li9pt.png)
![N_A=1393 lb](https://img.qammunity.org/2020/formulas/engineering/college/x2ir8hg50f1t439vg2iq6j4kkun2nkxb5w.png)
To find time that the car takes to a speed of 10 ft/s
Using kinematic equation
V=u+at
10=0+3.68t
![t=\frac {10}{3.68}\approx 2.72 s](https://img.qammunity.org/2020/formulas/engineering/college/cc7z8p8fzv8ghwzlyn631ytdyr3onr1wpy.png)