Answer:
396.9 meter
Step-by-step explanation:
If a represents the acceleration,
Then according to the question,
a = -9.8 m/s²,
( acceleration = change in velocity with respect to time ),
![dv = -9.8dt](https://img.qammunity.org/2020/formulas/mathematics/college/wscd5ovstjvxvvs5ua5rqb0iviqmwy5yf8.png)
Integrating both sides,
![v=-9.8t + C](https://img.qammunity.org/2020/formulas/mathematics/college/bct2u8es8tlltnghlczuqqciulbwi2wja8.png)
When t = 0 seconds, v = 0 m/s,
![0 = -9.8(0) + C](https://img.qammunity.org/2020/formulas/mathematics/college/bbawxy6yiqwdzd19nop4p9dgweghdbjtqn.png)
![\implies C = 0](https://img.qammunity.org/2020/formulas/mathematics/college/tkte3jsq2dh19zedrw79yy3ylmkhyvpgji.png)
![\implies v=-9.8t](https://img.qammunity.org/2020/formulas/mathematics/college/mef0lqysuvn3aru274c89xcywk13bfor6a.png)
( velocity = change in position with respect to time ),
![dx = -9.8tdt](https://img.qammunity.org/2020/formulas/mathematics/college/8bchxwmd4199nry0q3h487osty9ak8so64.png)
Integrating again,
![x=-4.9t^2 + C'](https://img.qammunity.org/2020/formulas/mathematics/college/gttnvxgv1azs38nqvkka4359yq2xzcs0pr.png)
When t = 0 , x = 0 meters,
![0=-4.9(0) + C'\implies C'=0](https://img.qammunity.org/2020/formulas/mathematics/college/vsshvaosn6q9movqujqwu3nsg3302sz9gg.png)
Hence, the final equation that shows the position of the hammer after t seconds,
![x=-4.9t^2](https://img.qammunity.org/2020/formulas/mathematics/college/mxmctr5f5ct21sx2weaicokzzgti18m8a1.png)
If t = 9 seconds,
( negative sign shows the fall ),
Therefore, it will fall 396.9 meter in 9 seconds