Answer:
P(X≥520) =0.02938
Explanation:
given,
n = 1000
Population size = N = 2,000,000
Specified characteristic = P = 0.49
Probability of obtaining x = 520
![\sigma_p = \sqrt{(p(1-p))/(1000)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bigfgzf8xtlbax927k7p63fsyw8tvy4shi.png)
![\sigma_p = \sqrt{(0.49(1-0.49))/(1000)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4814ac7h1wnfs6q2qv6bmv53cvyq70rp8m.png)
![\sigma_p =0.0158](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iqr0o3m4adqrsr1ipr0f50p6alpyau0xvx.png)
for x = 520
p = 520/1000 = 0.52
P(X≥520) = P(p≥0.52)
P(p≥0.52) =
![P(Z\geq (0.52-0.49)/(0.0158))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ckvoazp8vyyi4suncal8g0d3pwk4bnvs1t.png)
P(p≥0.52) =
![P(Z\geq 1.898)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y0zaz1z72bn2pf89uivi9a4jaz9gfi4kyj.png)
using z-table
P(p≥0.52) = 0.02938
P(X≥520) =0.02938