168k views
4 votes
HELP PLEASE !!!!!!! Pythagorean theorem

HELP PLEASE !!!!!!! Pythagorean theorem-example-1
User Panosru
by
8.7k points

2 Answers

3 votes

We are missing one of the legs. Thus, we rearrange the original formula of the pythagorean theorem...


\boxed{A^2+B^2=C^2}
\boxed{A^2=C^2-B^2}

Let's solve it...


Plug\;in\;the\;given\;numbers\;to\;the\;formula...\\\\A^2=16^2-8^2\\\\Find\;what\;the\;squared\;numbers\;equal\\\\\left[\begin{array}{ccc}16^2(16*16)=256\\8^2(8*8)=64\end{array}\right]\\\\\\Now,\;since\;we\;are\;trying\;to\;find;\a\;missing\;leg\;we\;subtract\;256\;from\;64...\\\\\boxed{256-64=192}\\\\\\Then,\;we\;find\;the\;square\;root\;of\;192\;(√(x) )\\\\\boxed{√(192)=13.856 }\\\\\\Since\;we\;have\;a\;decimal\;we\;need\;to\;round\;it\;to\;the\;nearest\;tenths...\\\\\boxed{13.856=13.9}

User KABoissonneault
by
8.4k points
1 vote

Answer:


\large\boxed{x=8\sqrt3}

Explanation:

The Pythagorean theorem:


leg^2+leg^2=hypotenuse^2

We have:


leg=8, leg=x,\ hypotenuse=16

Substitute:


8^2+x^2=16^2


64+x^2=256 subtract 64 from both sides


x^2=192\to x=√(192)\\\\x=√((64)(3))\\\\x=√(64)\cdot\sqrt3\\\\x=8\sqrt3

User JuanDM
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories