Answer:
Option C.
Explanation:
Assume that the below figure attached with this question.
Distance formula:
![Distance=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fr328ctd2ohcg1p6uxe99z9yko83xfu788.png)
From the below figure it is clear that the vertices of triangle are A(-1,6), B(-1,1) and C(2,2).
Using distance formula we get
![AB=√(\left(-1-\left(-1\right)\right)^2+\left(1-6\right)^2)\Rightarrow √(0+25)=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vmyoa04wkrzoi076p67zr810bpgkow1eye.png)
Similarly,
![BC=√(\left(2-\left(-1\right)\right)^2+\left(2-1\right)^2)=√(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5qd11n4kc6qjufb9vt6k0fmtusyhkmy4sq.png)
![AC=√(\left(2-\left(-1\right)\right)^2+\left(2-6\right)^2)=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9aqtjpc7mh40ilduvxlxf4xe2epny8hg84.png)
The perimeter of △ABC is
![perimeter=AB+BC+AC](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n4o3u2isjfoyr3a1q1ijuj6p2m687l689v.png)
![perimeter=5+√(10)+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t4mb1ddy76egi9hn9lgvttwxnp0uwb69vv.png)
![perimeter=10+√(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c62li2g36wfzslffnhsf73legvxv7142h3.png)
The perimeter of △ABC is
.
Therefore, the correct option is C.