Answer:
The sample should be 1,068.
Explanation:
Consider the provided information.
Confidence level is 95% and margin of error is 0.03.
Thus,
1-α=0.95
α=0.05, E=0.03 and planning value
![\hat p=0.5](https://img.qammunity.org/2020/formulas/mathematics/college/4kw2polfaaoetyftx4ai1vuxqam2asza27.png)
Formula to calculate sample size is:
![n=(\hat p(1-\hat p)(z_(\alpha/2))^2)/(E^2)](https://img.qammunity.org/2020/formulas/mathematics/college/mdnjosmuzsh43e4i9r6caf9gql4zaitxxy.png)
From the table we can find:
![z_(\alpha/2)=z_(0.05/2)\\z_(0.025)=1.96](https://img.qammunity.org/2020/formulas/mathematics/college/xa60rm7fjjoa985jz4igeebidy7y0k8cdz.png)
Substitute the respective values in the above formula we get:
![n=(0.5(0.5)(1.96)^2)/((0.03)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/1ly20rlls2aoscw53dlfhoaipbw2ylwztu.png)
![n=(0.25(1.96)^2)/((0.03)^2)\approx 1067.111](https://img.qammunity.org/2020/formulas/mathematics/college/glxdgsoqijc7wxi5f59fh4yb5rf86ijfsj.png)
Hence, the sample should be 1,068.