Direct computation:
Parameterize the top part of the circle
by
![\vec r(t)=(x(t),y(t))=(\cos t,\sin t)](https://img.qammunity.org/2020/formulas/mathematics/college/esds4w29yp68enuortam7aheii7ji5b42p.png)
with
, and the line segment by
![\vec s(t)=(1-t)(-1,0)+t(2,-\pi)=(3t-1,-\pi t)](https://img.qammunity.org/2020/formulas/mathematics/college/f5eegdfxrb6ubkewohlqw26nwxcg8av6gp.png)
with
. Then
![\displaystyle\int_C(\sin x\,\mathrm dx+\cos y\,\mathrm dy)](https://img.qammunity.org/2020/formulas/mathematics/college/1fsl68lzk91h65po5l2fyvxi9fsfaqpged.png)
![=\displaystyle\int_0^\pi(-\sin t\sin(\cos t)+\cos t\cos(\sin t)\,\mathrm dt+\int_0^1(3\sin(3t-1)-\pi\cos(-\pi t))\,\mathrm dt](https://img.qammunity.org/2020/formulas/mathematics/college/p7byv66vmw34jjtcbhp2wn0kxdlfsh9o7u.png)
![=0+(\cos1-\cos2)=\boxed{\cos1-\cos2}](https://img.qammunity.org/2020/formulas/mathematics/college/2wzxqvg60hil2hkog3m4pthdiykt1bu4sb.png)
Using the fundamental theorem of calculus:
The integral can be written as
![\displaystyle\int_C(\sin x\,\mathrm dx+\cos y\,\mathrm dy)=\int_C\underbrace{(\sin x,\cos y)}_(\vec F)\cdot\underbrace{(\mathrm dx,\mathrm dy)}_(\vec r)](https://img.qammunity.org/2020/formulas/mathematics/college/9ewl5ydxppunuxiva7ezdedasav6so96br.png)
If there happens to be a scalar function
such that
, then
is conservative and the integral is path-independent, so we only need to worry about the value of
at the path's endpoints.
This requires
![(\partial f)/(\partial x)=\sin x\implies f(x,y)=-\cos x+g(y)](https://img.qammunity.org/2020/formulas/mathematics/college/ll0ip93zkatvwjiaqnz8s0bh6kikmegjba.png)
![(\partial f)/(\partial y)=\cos y=(\mathrm dg)/(\mathrm dy)\implies g(y)=\sin y+C](https://img.qammunity.org/2020/formulas/mathematics/college/cj9l3gxtxcgr6702kur7wdm0at51wi5gv9.png)
So we have
![f(x,y)=-\cos x+\sin y+C](https://img.qammunity.org/2020/formulas/mathematics/college/bo4vyudfdhqjpfnmlzsp9noalwlrrulmwj.png)
which means
is indeed conservative. By the fundamental theorem, we have
![\displaystyle\int_C(\sin x\,\mathrm dx+\cos y\,\mathrm dy)=f(2,-\pi)-f(1,0)=-\cos2-(-\cos1)=\boxed{\cos1-\cos2}](https://img.qammunity.org/2020/formulas/mathematics/college/4j0dvwq3pzlhk0ht0a63q99j3xptvlxyj9.png)