224k views
3 votes
Anybody help me to solve this question. ​

Anybody help me to solve this question. ​-example-1

1 Answer

5 votes

Answer:


(1)/((b-c)),(1)/((c-a)) ,(1)/((a-b)) are\ in\ AP

Explanation:

Given that
(b-c)^2, (c-a)^2 , (a-b)^2 are in AP

To prove:
(1)/((b-c)),(1)/((c-a)) ,(1)/((a-b)) are in AP

From given as we know if p , q, r are in AP then 2q= p+r.


2(c-a)^2= (b-c)^2+(a-b)^2\\\\\Rightarrow 2(c^2+a^2-2ac)=b^2+c^2-2bc+a^2+b^2-2ab\\\\\Rightarrow 2c^2+2a^2-4ac= 2b^2+c^2+a^2 -2bc-2ab\\\\\Rightarrow a^2+c^2-2b^2-4ac= -2bc-2ab\\\\\Rightarrow a^2-2b^2+c^2= 4ac-2bc-2ab

Now


(1)/((b-c)),(1)/((c-a)) ,(1)/((a-b))2(1)/((c-a)) =(1)/((b-c))+(1)/((a-b))\\\\\Rightarrow (2)/((c-a))= (a-b+b-c)/((b-c)(a-b)) \\\\\Rightarrow (2)/((c-a))= (a-c)/((b-c)(a-b)) \\\\\Rightarrow2(b-c)(a-b) = (c-a)(a-c) \\\\\Rightarrow 2(ab-b^2-ac+bc)= -(a-c)^2\\\\\Rightarrow 2ab- 2b^2-2ac+2bc = -a^2-c^2+2ac\\\\\Rightarrow a^2-2b^2+c^2=4ac-2ab-2bc

Which is the result of AP

.

Hence proved

User Waqas Ali
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories