Answer:
the angular velocity of the child and merry-go-round= 0.21 rad/sec
Step-by-step explanation:
mass m= 25 kg
initial speed v_i= 2.5 m/s
radius of merry go round= 2.0 m
MOI = 500 Kg-m^2
The angular momentum of the child is given by
L=mvr
initial angular momentum
Li=25×2.5×2= 125 kg m^2 s^{-1}
The final angular momentum considering the child and the merry-go-round form a system
![L_f= (I_D+ I_C)\omega](https://img.qammunity.org/2020/formulas/physics/college/s5xr5oda1g8qyh4a0wlxkbrkbu09l18y8a.png)
MOI of child I_C= 25×2^2= 25×4= 100 Kg-m^2
now plugging values in the above equation
![L_f= (500+ 100)\omega](https://img.qammunity.org/2020/formulas/physics/college/id111za6lmyop3huh3nvanb7qtamd1aok3.png)
L_f= 600ω
Now , we know that the angular momentum is conserved we can write
Li =Lf
125= 600ω
⇒ω=125/600 = 0.21 rad/sec
the angular velocity of the child and merry-go-round= 0.21 rad/sec