Answer:
![(a+b)^n ={n \choose 0}a^((n))b^((0)) + {n \choose 1}a^((n-1))b^((1)) + {n \choose 2}a^((n-2))b^((2)) + ..... +{n \choose n}a^((0))b^((n))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/35k6ahxwsb4rfwysqthcrnmsr97dd0n806.png)
Explanation:
The Given question is INCOMPLETE as the statements are not provided.
Now, let us try and solve the given expression here:
The given expression is:
![(a +b)^n, n > 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgevbf0yl8s2eq3hlqmwiw1ymtbap9kvv0.png)
Now, the BINOMIAL EXPANSION is the expansion which describes the algebraic expansion of powers of a binomial.
Here,
![(a+b)^n = \sum_(k=0)^(n){n \choose k}a^((n-k))b^((k))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qvg0swra2fsu84z976y2mo7om37dskfkhf.png)
or, on simplification, the terms of the expansion are:
![(a+b)^n ={n \choose 0}a^((n))b^((0)) + {n \choose 1}a^((n-1))b^((1)) + {n \choose 2}a^((n-2))b^((2)) + ..... +{n \choose n}a^((0))b^((n))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/35k6ahxwsb4rfwysqthcrnmsr97dd0n806.png)
The above statement holds for each n > 0
Hence, the complete expansion for the given expression is given as above.