Answer:
a)
118.6 N
b)
891 N
Step-by-step explanation:
a)
In triangle ADE
![Cos\theta = (AE)/(AD) = (6.45)/(15) \\Cos\theta = 0.43\\\theta = Cos^(-1)(0.43)\\\theta = 64.5](https://img.qammunity.org/2020/formulas/physics/high-school/8z8fk329cjwxwalzuril7ulcdv9z3lkhal.png)
= Force applied by the wall on the ladder
= weight of the person = 579 N
= weight of the ladder = 312 N
Using equilibrium of torque about point A
![F Sin\theta (AD) = W_(L) Cos\theta (AC) + W_(p) Cos\theta (AB)\\F Sin64.5 (15) = (312) Cos64.5 (7.5) + (579) Cos64.5 (2.4)\\F = 118.6 N](https://img.qammunity.org/2020/formulas/physics/high-school/6yu9andc7ydy0vbpppr1k7kloxepn20ley.png)
b)
Using equilibrium of force in vertical direction
![N = W_(p) + W_(L)\\N = 579 + 312\\N = 891 N](https://img.qammunity.org/2020/formulas/physics/high-school/tpoiarklfctvjjqdjj1zmfd7am9k3fhzy1.png)