70.0k views
0 votes
Determine whether the function is a linear transformation. T: P2 → P2, T(a0 + a1x + a2x2) = (a0 + a1 + a2) + (a1 + a2)x + a2x2.

User Agentcurry
by
8.2k points

1 Answer

5 votes

Answer with Step-by-step explanation:

We are given that a function


T:P_2\rightarrow P_2


T(a_0+a_1x+a_2x^2)=(a_0+a_1+a_2)+(a_1+a_2)x+a_2x^2

We have to determine the given function is a linear transformation.

If a function is linear transformation then it satisfied following properties


1.T(x+y)=T(x)+T(y)

2.
T(ax)=aT(x)


T(a_0+a_1x+a_2x^2+b_0+b_1x+b_2x^2)=T((a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2)=(a_0+b_0+a_1+b_1+a_2+b_2)+(a_1+b_1+a_2+b_2)x+(a_2+b_2)x^2


T(a_0+a_1x+a_2x^2+b_0+b-1x+b_2x^2)=(a_0+a_1+a_2)+(a_1+a_2)x+a_2x^2+(b_0+b_1+b_2)+(b_1+b_2)x+b_2x^2


T(a_0+a_1x+a_2x^2+b_0+b-1x+b_2x^2)=T(a_0+a_1x+a_2x^2)+T(b_0+b_1x+b_2x^2)


T(a(a_0+a_1x+a_2x^2))=T(aa_0+aa_1x+aa_2x^2)


T(a(a_0+a_1x+a_2x^2))=(aa_0+aa_1+aa_2)+(aa_1+aa_2)x+(aa_2)x^2


T(a(a_0+a_1x+a_2x^2))=a(a_0+a_1+a_2)+a(a_1+a_2)x+aa_2x^2=a((a_0+a_1+a_2)+(a_1+a_2)x+a_2x^2)=aT(a_0+a_1x+a_2x^2)

Hence, the function is a linear transformation because it satisfied both properties of linear transformation.

User Klas Mellbourn
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories