Answer:
The minimum angle is
![13.99^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/96cvdmkb03m8osn3lzb4qp1qh7h05awnzb.png)
Solution:
As per the question:
Frequency of the sound, f = 1270 Hz
Width, d = 1.12
Velocity of sound, v = 344 m/s
Now,
We know that:
![v = f\lambda](https://img.qammunity.org/2020/formulas/chemistry/middle-school/rifpiumxcvv1zv6r1ht9uuuubjzqzm8yh3.png)
where
= wavelength
Thus
![344 = 1270* \lambda](https://img.qammunity.org/2020/formulas/physics/college/t0ni7mstefibna7bnzrbz8yrgqb1aaup9z.png)
![\lambda = 0.2708\ m](https://img.qammunity.org/2020/formulas/physics/college/11qw2z2071tlbhgfvs7j906wkv7qhuogj8.png)
Now, for diffraction:
![n\lambda =dsin\theta](https://img.qammunity.org/2020/formulas/physics/college/s58362ldcgb1baqwfx6a8ux6suqubit9iq.png)
Now,
To calculate the minimum angle, we use the above eqn:
![\theta = sin^(- 1)((n\lambda)/(d))](https://img.qammunity.org/2020/formulas/physics/college/msjbrgulfne7mznwk53lst081rq1b33s7b.png)
where
n = 1
![\theta = sin^(- 1)((0.2708)/(1.12)) = 13.99^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/r31ni2t09lk7wnwh3lu5dntoyn9iu5ajdp.png)