Answer:
![t=15.4\ years](https://img.qammunity.org/2020/formulas/mathematics/high-school/94c61kt0hai7fomsfir5xp399j03ampsvu.png)
Explanation:
The exponential growth function compounded continuously is equal to
where
A is the final population
P is the initial population
r is the rate of growth in decimal
t is Number of years
e is the mathematical constant number
we have
substitute in the function above
simplify
![4=(e)^(0.09t)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7celp1w7vfm9b31zjr29wp48fnlyy71wyh.png)
Take natural log of both sides
![ln(4)=ln[(e)^(0.09t)]](https://img.qammunity.org/2020/formulas/mathematics/high-school/lpof42e9f4bxal24ctwfglc3sy06za1m42.png)
![ln(4)=0.09t(ln(e))](https://img.qammunity.org/2020/formulas/mathematics/high-school/gfy8jp0ac6aoyc8vmjfv6lah1l9j1o5e28.png)
![ln(e)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/x54djqahe34qp1x1mdc1qkdxtf2q7bnhyk.png)
![ln(4)=0.09t](https://img.qammunity.org/2020/formulas/mathematics/high-school/zhhxlaitxjljgfg85zy6p50mbluyj22qlp.png)
![t=ln(4)/0.09](https://img.qammunity.org/2020/formulas/mathematics/high-school/di6vt5puhst5vw006bi4fahsz9otoi9i8o.png)
![t=15.4\ years](https://img.qammunity.org/2020/formulas/mathematics/high-school/94c61kt0hai7fomsfir5xp399j03ampsvu.png)