135k views
0 votes
4cos^2(theta)+2sin(theta)=2

1 Answer

6 votes

Answer:

The value of given expression i.e Ф is 90° and - 30°

Explanation:

Given as :

4 cos²Ф + 2 sinФ = 2

∵ sin²Ф + cos²Ф = 1 , so , cos²Ф = 1 - sin²Ф

Or, 4 ( 1 - sin²Ф ) + 2 sinФ = 2

Or, 4 - 4 sin²Ф + 2 sinФ = 2

or, 4 sin²Ф - 2 sinФ - 4 + 2 = 0

or, 4 sin²Ф - 2 sinФ - 2 = 0

or, 2 sin²Ф - sinФ - 1 = 0

or, 2 sin²Ф - 2 sinФ + sinФ - 1 = 0

Or, 2 sinФ ( sinФ - 1 ) + 1 ( sinФ - 1 ) = 0

∴ ( sinФ - 1 ) ( 2 sinФ + 1 ) = 0

i.e ( sinФ - 1 ) = 0 And ( 2 sinФ + 1 ) = 0

since ( sinФ - 1 ) = 0

So, sinФ = 1

Or, Ф =
sin^(-1)(1) = 90°

And ( 2 sinФ + 1 ) = 0

Or, 2 sinФ = - 1

Or, sinФ = -
(1)/(2)

Or, Ф =
sin^(-1)(-(1)/(2)) = - 30°

Hence the value of given expression i.e Ф is 90° and - 30° Answer

User Vinhent
by
5.5k points