Answer: The mass of methane burned is 12.4 grams.
Step-by-step explanation:
The chemical equation for the combustion of methane follows:
![CH_4(g)+2O_2(g)\rightarrow CO_2(g)+2H_2O(g)](https://img.qammunity.org/2020/formulas/chemistry/college/c95smvmeqfz6ofnqhcvlf3pfojv1ffbk3x.png)
The equation for the enthalpy change of the above reaction is:
![\Delta H^o_(rxn)=[(1* \Delta H^o_f_((CO_2(g))))+(2* \Delta H^o_f_((H_2O(g))))]-[(1* \Delta H^o_f_((CH_4(g))))+(2* \Delta H^o_f_((O_2(g))))]](https://img.qammunity.org/2020/formulas/chemistry/college/7v9r88v18llus1oi9rh2rbdqg9fl65g1gj.png)
We are given:
![\Delta H^o_f_((H_2O(g)))=-241.82kJ/mol\\\Delta H^o_f_((CO_2(g)))=-393.51kJ/mol\\\Delta H^o_f_((CH_4(g)))=-74.81kJ/mol\\\Delta H^o_f_(O_2)=0kJ/mol](https://img.qammunity.org/2020/formulas/chemistry/college/vj54c5rgdwt0i8uacwl5mp3gocng8m9zfy.png)
Putting values in above equation, we get:
![\Delta H^o_(rxn)=[(1* (-393.51))+(2* (-241.82))]-[(1* (-74.81))+(2* (0))]\\\\\Delta H^o_(rxn)=-802.34kJ](https://img.qammunity.org/2020/formulas/chemistry/college/rnekf5ssolbzxzjtb3bfrdmbtv7xdg5oj0.png)
The heat calculated above is the heat released for 1 mole of methane.
The process involved in this problem are:
![(1):H_2O(l)(26^oC)\rightarrow H_2O(l)(100^oC)\\\\(2):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)\\\\(3):H_2O(g)(100^oC)\rightarrow H_2O(g)(101^oC)](https://img.qammunity.org/2020/formulas/chemistry/college/sfiqn1j917uttv95490m04ivy976pp7xiu.png)
Now, we calculate the amount of heat released or absorbed in all the processes.
![q_1=mC_p,l* (T_2-T_1)](https://img.qammunity.org/2020/formulas/chemistry/college/iwqrekckgoegzuoja9l4f7ucm6c0pbnwwk.png)
where,
= amount of heat absorbed = ?
m = mass of water = 242.0 g
= specific heat of water = 4.18 J/g°C
= final temperature =
![100^oC](https://img.qammunity.org/2020/formulas/chemistry/high-school/kwffh4knobl1vjasmksyagkyedtvki4ae4.png)
= initial temperature =
![26^oC](https://img.qammunity.org/2020/formulas/chemistry/middle-school/m8sgbmv2fzl6s1s3dfvmr78vdnw7gc6lul.png)
Putting all the values in above equation, we get:
![q_1=242.0g* 4.18J/g^oC* (100-(26))^oC=74855.44J](https://img.qammunity.org/2020/formulas/chemistry/college/f8hgoxi4gziy4segmz57ymkeesnqhegqyi.png)
![q_2=m* L_v](https://img.qammunity.org/2020/formulas/physics/college/ltbj6clfj4im7y7s1iw1twnakxam91znfc.png)
where,
= amount of heat absorbed = ?
m = mass of water or steam = 242 g
= latent heat of vaporization = 2257 J/g
Putting all the values in above equation, we get:
![q_2=242g* 2257J/g=546194J](https://img.qammunity.org/2020/formulas/chemistry/college/trt536u6fsu9lbs2lzlhp8xy96u8le8e8j.png)
![q_3=mC_p,g* (T_2-T_1)](https://img.qammunity.org/2020/formulas/chemistry/college/bbr93doj2w7ta59v9f2ea91gidhokhekal.png)
where,
= amount of heat absorbed = ?
m = mass of steam = 242.0 g
= specific heat of steam = 2.08 J/g°C
= final temperature =
![101^oC](https://img.qammunity.org/2020/formulas/chemistry/college/1ioexx4hc5mdst8sww2q3ljyjpdejg7ugs.png)
= initial temperature =
![100^oC](https://img.qammunity.org/2020/formulas/chemistry/high-school/kwffh4knobl1vjasmksyagkyedtvki4ae4.png)
Putting all the values in above equation, we get:
![q_3=242.0g* 2.08J/g^oC* (101-(100))^oC=503.36J](https://img.qammunity.org/2020/formulas/chemistry/college/8fvfmz7m9109cd5e0f33zkl9uzi66a9h56.png)
Total heat required =
![q_1+q_2+q_3=(74855.44+546194+503.36)=621552.8J=621.552kJ](https://img.qammunity.org/2020/formulas/chemistry/college/qjzaxazk2pppfes7114c9gzdpeu9qym9dz.png)
- To calculate the number of moles of methane, we apply unitary method:
When 802.34 kJ of heat is needed, the amount of methane combusted is 1 mole
So, when 621.552 kJ of heat is needed, the amount of methane combusted will be =
![(1)/(802.34)* 621.552=0.775mol](https://img.qammunity.org/2020/formulas/chemistry/college/k3nkkp5wtr1al2hup22w09hbi8q0jcx61t.png)
To calculate the number of moles, we use the equation:
![\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}](https://img.qammunity.org/2020/formulas/chemistry/high-school/gwh5prgbdt4s2p8o8xquycz897bwt6lvw1.png)
Molar mass of methane = 16 g/mol
Moles of methane = 0.775 moles
Putting values in above equation, we get:
![0.775mol=\frac{\text{Mass of methane}}{16g/mol}\\\\\text{Mass of methane}=(0.775mol* 16g/mol)=12.4g](https://img.qammunity.org/2020/formulas/chemistry/college/9oiuzslhqdhd8wtlt97dcbkeqvgf7b0ky1.png)
Hence, the mass of methane burned is 12.4 grams.