Answer:
![g(x)=x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/phzb2rwk98k8o5vtqw6zsbjc0jt5vzqc4c.png)
Explanation:
Given
![f(x)=x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eunc2goszsldkqrud8fja8zscemftc1ic9.png)
shifted 7 units left and 3 units down
Translation Rules:
![f(x)\rightarrow f(x+c)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8yky8t1y6kx15e486s0kh38q9pawxc1vd7.png)
If
the function shifts
units to the left.
If
the function shifts
units to the right.
![f(x)\rightarrow f(x)+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1cq3tid39v885wmo0kvzhn48rk183b7dkw.png)
If
the function shifts
units to the up.
If
the function shifts
units to the down.
Applying the rules to
![f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g5as8f90m6mrh9dvzpro2yb3z0msz95zff.png)
[7 units left]
[3 units down]
∴
![g(x)=f(x+7)-3=(x+7)-3=x+7-3=x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o2dr6ur1f66c6cg9r4iraof7hh9ntpo8yh.png)
![g(x)=x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/phzb2rwk98k8o5vtqw6zsbjc0jt5vzqc4c.png)