Answer:
![\sigma_2=288.39\,MPa](https://img.qammunity.org/2020/formulas/physics/college/f4ogxpbh4iwvkv1ln0jm9otxrfd76aez7p.png)
Step-by-step explanation:
Given:
Strain fracture toughness,
![K=40\,MPa.√(m)](https://img.qammunity.org/2020/formulas/physics/college/tzpoedhuek4szblvvx4edfu6manwjufb4z.png)
maximum internal crack length in first case,
![l_1=2.5* 10^(-3)m](https://img.qammunity.org/2020/formulas/physics/college/4srooz7xqyhqo5u0zz3jkil7f3prbtabvq.png)
stress level in the first case,
![\sigma_2 =365\,MPa](https://img.qammunity.org/2020/formulas/physics/college/bt8jqchilynris7dyfurr0ovv0ra9z67s3.png)
maximum internal crack length in second case,
![l_2=4.0* 10^(-3)m](https://img.qammunity.org/2020/formulas/physics/college/rv3qb4lcxryr9gvyot7glv667zr1irki7y.png)
stress level in the second case,
![\sigma_2 =?](https://img.qammunity.org/2020/formulas/physics/college/pj3p4nk9ah74cx8acb643kpgphw2v3fkov.png)
So, now we require a factor given as:
![Y=\frac{K}{\sigma.\sqrt{(\pi.l)/(2) } }](https://img.qammunity.org/2020/formulas/physics/college/gtwy9iled2rwqjaxb1b16dxlmiogn5kd5f.png)
![Y=\frac{40}{365\sqrt{(\pi* 2.5* 10^(-3))/(2) } }](https://img.qammunity.org/2020/formulas/physics/college/4nb7zyk37bpmm1ukv0vmbmeoqb2se9iw4f.png)
![Y=1.75](https://img.qammunity.org/2020/formulas/physics/college/qzmpzvido9esh31hycrxdyj11dsb34jc6u.png)
Now,
![\sigma_2=\frac{K}{Y.\sqrt{(\pi.l)/(2) } }](https://img.qammunity.org/2020/formulas/physics/college/nb65e6ct86tf952t8xzpdr5gty2b0tsy9h.png)
![\sigma_2=\frac{40}{1.75\sqrt{(\pi* 4* 10^(-3))/(2) } }](https://img.qammunity.org/2020/formulas/physics/college/zd9jlk6havbzhki47a0n2956nbhhjojzw9.png)
![\sigma_2=288.39\,MPa](https://img.qammunity.org/2020/formulas/physics/college/f4ogxpbh4iwvkv1ln0jm9otxrfd76aez7p.png)