16.2k views
3 votes
Find the intensity of a 55 dB sound given lo-10-12 wm2

2.23 x 10-6 Wim2
1.01 x 10-7 Wm2
03.16 x 10-7 win
O5.43 x 10-6 Wm2 .

User Elson
by
5.8k points

1 Answer

6 votes

Answer:

Intensity=
I=3.16* 10^(-7)\ W\ m^(-2)

Step-by-step explanation:

Given:


\beta=55\ dB\\I_o=10^(-12)\ W\ m^(-2)

The sound level
\beta in dB with intensity
I

and reference intensity
I_0 is given by:


\beta(dB)=10 \log_(10)((I)/(I_0))

Plugging in values.


55=10 \log_(10)((I)/(10^(-12)))

Dividing both sides by 10.


(55)/(10)=(10 \log_(10)((I)/(10^(-12))))/(10)


5.5=\log_(10)(I)/(10^(-12))

The above can be written as


10^(5.5)=(I)/(10^(-12))

Multiplying both sides by
10^(-12)


10^(5.5)* 10^(-12)=10^(-12)* (I)/(10^(-12))


10^((5.5-12))=I


10^((-7.5))=I


I=3.16* 10^(-7)\ W\ m^(-2)

Intensity =
I=3.16* 10^(-7)\ W\ m^(-2)

User Courcelan
by
5.3k points