195k views
1 vote
N=4
I and 2 I are zeros
F(-2)=40

1 Answer

3 votes

Answer:

So the answer is
y= (x^(4) +5x^(2)+4 )

Explanation:

Given;


N=4
, 'I' and '2I' are zeros and


F(-2)=40
(equation-1)

Assuming you need real coefficients so you use complex conjugate roots;


y=a*(x-i)* (x+i)* (x-2i)* (x+2i)
Where
y=F(x)


y=a* (x^(2) -i^(2) )* (x^(2) -4i^(2) )
(By applying
(a-b)(a+b)=a^(2) -b^(2)
)


y=a*(x^(2)+1 )(x^(2)+4 )
(We know
i^(2) =-1 )


y=a* (x^(4)+4x^(2) +x^(2) +4 )


y=a* (x^(4)+5x^(2) +4 )
(equation-2)

From equation;


x=-2
and
y=40

Plug 'x' and 'y' value in equation-2,


40=a* ((-2)^(4)+5(-2)^(2) +4 )


40=a* (16+20+4)


40=a* 40


a=1

Now equation-2 become;


y=1* (x^(4) +5x^(2)+4 )


y= (x^(4) +5x^(2)+4 )

User OlivierLi
by
6.4k points