Answer:
![\alpha =29.60](https://img.qammunity.org/2020/formulas/physics/high-school/f7lp3is4th3uews7wklth2jp9he505y24v.png)
Step-by-step explanation:
Let the normal force of the wall on the ladder be N2 and the normal force of the ground on the ladder be N1.
Horizontal forces:
[1]
Vertical forces:
[2]
Substitute [2] into [1]:
![N_2 = (u1)*[m*g - (u2)(N_2)]](https://img.qammunity.org/2020/formulas/physics/high-school/exmnsavfq8s94ghb8k43fd7luob59zk1d6.png)
[3]
Torques about the point where the ladder meets the ground:
![m*g((L)/(2))sin\alpha= (N_2)(L)cos\alpha+(u2)(N_2)(L)sin\alpha](https://img.qammunity.org/2020/formulas/physics/high-school/jz6btwfxq7l6ynexkoy6sewvl0nmhmtkxy.png)
![((1)/(2))*m*g=(N_2)*cot\alpha+(u2)(N_2)](https://img.qammunity.org/2020/formulas/physics/high-school/m7ksd4mlpfnymj04lrf7pewa40553dg9nn.png)
![[1 + (u1)(u2) - 2(u2)(u1)]/2 [1 + (u1)(u2)]= [(u1)/[1 + (u1)(u2)]]cot\alpha](https://img.qammunity.org/2020/formulas/physics/high-school/4rcy6580vy5cjud4ebl7lxsyq3sib85nxp.png)
tanα =
![(2*(u1))/(1-u1*u2)](https://img.qammunity.org/2020/formulas/physics/high-school/urizy8aa5nysd8u5rhwkj5d6j4tpvueqa0.png)
![\alpha =tan^(-1)*((2*0.265)/(1-0.265*0.253))](https://img.qammunity.org/2020/formulas/physics/high-school/da83v9zt26qwsz33linheq49awqpo3js5y.png)
![\alpha =tan^(-1)*(0.568)](https://img.qammunity.org/2020/formulas/physics/high-school/qxysc8glgr2e402wt1lwcz9dhhr2c6mvq7.png)
![\alpha =29.60](https://img.qammunity.org/2020/formulas/physics/high-school/f7lp3is4th3uews7wklth2jp9he505y24v.png)