37.5k views
3 votes
Find the extreme values of the function f(x, y) = 4x2 + 6y2 on the circle x2 + y2 = 1.

User Marieliz
by
6.1k points

1 Answer

2 votes

Answer with Step-by-step explanation:

We are given that


f(x,y)=4x^2+6y^2

Let g(x,y)=
x^2+y^2=1

We have to find the extreme values of the given function


\\abla f(x,y)<8x,12y>


\\abla g(x,y)=<2x,2y>

Using Lagrange multipliers


\\abla f(x,y)=\lambda \\abla g(x,y)


f_x=\lambda g_x


8x=\lambda 2x

Possible value x=0 or
\lambda=4

If x=0 then substitute the value in g(x,y)

Then, we get
y=\pm 1


f_y=\lambda g_y


12y=\lambda 2y

If
\lambda=4 and substitute in the equation

Then , we get possible value of y=0

When y=0 substitute in g(x,y) then we get


x=\pm 1

Hence, function has possible extreme values at points (0,1),(0,-1), (1,0) and (-1,0).


f(0,1)=6


f(0,-1)=6


f(1,0)=4


f(-1,0)=4

Therefore, the maximum value of f on the circle
x^2+y^2=1 is
f(0,\pm1)=6 and minimum value of
f(\pm1,0)=4

User Pattabi Raman
by
5.9k points