Answer:
Explanation:
Determining the expression for the sequence:
Given the sequence
10, 11, 12, 13
Here, the first element is:
a₁ = 10
An arithmetic sequence has a constant difference 'd' and is defined by
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2022/formulas/mathematics/college/3vmzbvhisu702q5jbb4op8ei5uigsiyn5y.png)
computing the differences of all the adjacent terms
![11-10=1,\:\quad \:12-11=1,\:\quad \:13-12=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/sb6tcqjv5ee9zij5g6hxqbaehpheutwtyv.png)
The difference between all the adjacent terms is the same and equal to
![d=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/fjhykjoshmo40xm4w9humykotgca7e1212.png)
now substituting d = 1 and a₁ = 10 in the nth term
![a_n=a_1+\left(n-1\right)d](https://img.qammunity.org/2022/formulas/mathematics/college/3vmzbvhisu702q5jbb4op8ei5uigsiyn5y.png)
![a_n=\left(n-1\right)+10](https://img.qammunity.org/2022/formulas/mathematics/high-school/c71vjchlm7g6rqlgdo05t00e1utb8q22pu.png)
![a_n=n+9](https://img.qammunity.org/2022/formulas/mathematics/high-school/5k5mu1q6pf5bjjdbn7f2xt736r32abjimr.png)
Determining the value of the 9th term
Given the nth term
![a_n=n+9](https://img.qammunity.org/2022/formulas/mathematics/high-school/5k5mu1q6pf5bjjdbn7f2xt736r32abjimr.png)
substituting n = 9 to determine the 9th term
![a_9=9+9](https://img.qammunity.org/2022/formulas/mathematics/high-school/jm8bnk3u9kq6feediaj7ihewgj7fffapqc.png)
![a_9=18](https://img.qammunity.org/2022/formulas/mathematics/high-school/j1tx0qjbtmzfljph98gzqzoizkarqbp3vm.png)
Therefore, the vale of the 9th term is:
![a_9=18](https://img.qammunity.org/2022/formulas/mathematics/high-school/j1tx0qjbtmzfljph98gzqzoizkarqbp3vm.png)