Answer:
v=3.649 m/s
Step-by-step explanation:
Lets start with the force of gravity on the elevator.
![Fg=2000 kg* 9.8(m)/(s^(2) ) \\Fg= 19600N](https://img.qammunity.org/2020/formulas/physics/high-school/q5x26vfp0xlvwcxwkx5y6nt2nce8sdu0xj.png)
But the friction clamp opposes this with a force of 17000 N
So the Net force on the elevator is
![Ft=19600 - 17000 \\Ft= 2600 N](https://img.qammunity.org/2020/formulas/physics/high-school/bnwupio6wsv60ljphxqjp61cx6h8yd8x5a.png)
Kinetic Energy
![K=(1)/(2)*m*v^(2)\\K=(1)/(2)*2000kg*(4(m)/(s)) ^(2)\\K=16000J](https://img.qammunity.org/2020/formulas/physics/high-school/g0wkfi4kw1yfx2r5bpd0qh6bbhzxk2awyj.png)
The motion will be describe
original Kinetic energy + work done = final kinetic energy + spring energy
![Ek+Ft=Ekf+Fk\\16000J+2600J=(1)/(2)*m*v^(2)+(1)/(2)*k*x^(2) \\18600J=(1)/(2)*2000kg*v^(2)+ (1)/(2)*10.6x10^(3)(N)/(m) *1m^(2)\\18600-5300=(1)/(2)*2000kg*v^(2)\\v^(2)=(13300J)/(1000kg)\\v^(2)=13.3\\v=√(13.3)=3.64 (m)/(s)](https://img.qammunity.org/2020/formulas/physics/high-school/lnqzjvrtvm4ljcawvd7fq145130xjni9rg.png)