The quadratic equation with roots 1/α and 1/β is
![6 x^(2)+5 x-2=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f6dy5kuhjk3xbpfp0ycl3dtg4jzaoj8nwq.png)
Solution:
Given, roots of equation
![2 x^(2)-5 x-6=0 \text { are } \alpha, \beta](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i6o4iw0dhcaayjm3jvum1tqtxdot1t46ll.png)
We have to find equation whose roots are 1/α, and 1/β.
We know that,
![\text { sum of roots }=\frac{-x \text { cosficient }}{x^(2) \text { coefficient }} \rightarrow \alpha+\beta=(-(-5))/(2) \rightarrow \alpha+\beta=(5)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hd910dvvfaowiaq3m309f4kr83o8gpjx7a.png)
![\text { And, product of roots }=(c o n s t a n t)/(x^(2) c o e f f i c i e n t) \rightarrow \alpha \beta=(-6)/(2) \rightarrow \alpha \beta=-3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/repbfki9khq9b340ltc7djva8uiupq4j1a.png)
Now, we know that, general form of an equation is
![x^(2)-(\text { sum of roots }) x+\text { product of roots }=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bjbyix862k2pql9f8hn8jpazrztkcnxp01.png)
Then, equation whose roots 1/α and 1/β is
![\begin{array}{l}{x^(2)-\left((1)/(\alpha)+(1)/(\beta)\right) x+(1)/(\alpha) * (1)/(\beta)=0} \\\\ {\rightarrow x^(2)-\left((\alpha+\beta)/(\alpha \beta)\right) x+(1)/(\alpha \beta)=0}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j1pltz735rv9jo9wlpew81rp2xvzq0b928.png)
from above given equation,
![\begin{array}{l}{\rightarrow x^(2)-\left(((5)/(2))/(-3)\right) x+(1)/(-3)=0} \\\\ {\text { multiplying equation with }-3} \\\\ {\rightarrow-3 x^(2)-(5)/(2) x+1=0} \\\\ {\text { multiplying equation with } 2} \\\\ {\rightarrow-6 x^(2)-5 x+2=0} \\\\ {\rightarrow-6 x^(2)-5 x+2=0} \\\\ {\text { multiplying equation with }-1} \\\\ {\rightarrow 6 x^(2)+5 x-2=0} \\\\ {\text { Hence, the required line equation is } 6 x^(2)+5 x-2=0}\end{array}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lpbayk5yg8xt53cftsyl3muaapodo0lcz5.png)