Answer:
(a) Sample mean = 2.42
Sample variance = 0.29
Sample standard deviation = 0.53
(b) Please see the picture below
Explanation:
(a) 1. Calculate the sample mean:
To calculate the sample mean take all the times and divide them between the number of items of the sample:
![x=(1.75+1.91+1.92+2.35+2.53+2.62+3.09+3.15)/(8)](https://img.qammunity.org/2020/formulas/mathematics/college/muxgx1obllkc2hfkps2m38aseilql80clr.png)
![x=2.42](https://img.qammunity.org/2020/formulas/mathematics/college/x5y4lprih6uo0hcosydgsv2n3uq1ybfxnw.png)
2. Calculate the sample variance:
To calculate the sample variance lets to name the items as the following:
![x_(1)=1.75](https://img.qammunity.org/2020/formulas/mathematics/college/h0mo9dl2b0jm9ee4d5c4jvmnaikjlusqh8.png)
![x_(2)=1.91](https://img.qammunity.org/2020/formulas/mathematics/college/l4o645e6z71udszmehd03uw148a80lai3l.png)
![x_(3)=1.92](https://img.qammunity.org/2020/formulas/mathematics/college/tjs4zlhqv1arha6v4mml8axsbvvkotdolv.png)
![x_(4)=2.35](https://img.qammunity.org/2020/formulas/mathematics/college/w0vfa8p6twjijxfe4smll55zgsqnkq1acg.png)
![x_(5)=2.53](https://img.qammunity.org/2020/formulas/mathematics/college/qtut2ph60ha60ssrknzbsuxh1hiv0jb54h.png)
![x_(6)=2.62](https://img.qammunity.org/2020/formulas/mathematics/college/v5zdzj5hwvkpjj0l9u1w51ftv5o6obfhfz.png)
![x_(7)=3.09](https://img.qammunity.org/2020/formulas/mathematics/college/dxx7ynm9hpnov1oi8x1oa110patk4gqnni.png)
![x_(8)=3.15](https://img.qammunity.org/2020/formulas/mathematics/college/y725h9b410eyzgcrg1af3yyui4afbnubtv.png)
So, the formula to calculate the sample varianza is:
![s^(2)=((x_(1)-x)^(2)+(x_(2)-x)^(2)+(x_(3)-x)^(2)+(x_(4)-x)^(2)+(x_(5)-x)^(2)+(x_(6)-x)^(2)+(x_(7)-x)^(2)+(x_(8)-x)^(2))/(n-1)](https://img.qammunity.org/2020/formulas/mathematics/college/zz0nhvy2ty454keihezo8f8l6u1uqu6jv0.png)
where n is the number of items of the sample and x is the sample mean.
Replacing values:
![s^(2)=((-0.67)^(2)+(-0.51)^(2)+(-0.5)^(2)+(-0.07)^(2)+(0.11)^(2)+(0.2)^(2)+(0.67)^(2)+(0.73)^(2))/(7)](https://img.qammunity.org/2020/formulas/mathematics/college/i6jreawy6bpnsue7fqacsgoovfmrnl3zk8.png)
![s^(2)=((0.4489+0.2601+0.25+0.0049+0.0121+0.04+0.4489+0.5329)/(7)](https://img.qammunity.org/2020/formulas/mathematics/college/76pwddn46imovyv9ammksb7xjw3jf2h3b5.png)
![s^(2)=((0.4489+0.2601+0.25+0.0049+0.0121+0.04+0.4489+0.5329)/(7)](https://img.qammunity.org/2020/formulas/mathematics/college/76pwddn46imovyv9ammksb7xjw3jf2h3b5.png)
![s^(2)=0.29](https://img.qammunity.org/2020/formulas/mathematics/college/seylfog2y8cbppbzttyfnglfrs5ozvo3m4.png)
3. Calculate the sample standard deviation:
The standard deviation is the square root of the variance, so:
![d=√(0.29)](https://img.qammunity.org/2020/formulas/mathematics/college/17b2hc0v50w3j1zpd52l8qc4t4yct9kfy4.png)
![d=0.53](https://img.qammunity.org/2020/formulas/mathematics/college/5axriychhtup0ia5visn93eu6wjrs1i51z.png)
(b) (1) To construct a box plot of the data, first sort the data from the smallest to the largest:
1.75 1.91 1.92 2.35 2.53 2.62 3.09 3.15
(2) Find the median of the data.
As n is an odd numer the median will be the mean of the two data of the center:
![median=(2.35+2.53)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/vciea08h7tzvalb2638era66ezd2qbrtc9.png)
![median=2.44](https://img.qammunity.org/2020/formulas/mathematics/college/h71mxa3rfvc18b2yerkqmecr93x3rrfq37.png)
(3) Find the first quartile:
![firstquartile=(1.91+1.92)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/bln7hgp4m83mdbdraaepwn86p62x9689su.png)
![firstquartile=1.915](https://img.qammunity.org/2020/formulas/mathematics/college/ir1fuklb1fx03y5tht6p1sulcptub5q1vd.png)
(4) Find the third quartile:
![thirdquartile=(2.62+3.09)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/murqzvsgl1sv25y5mjawitzmcd6lbh33zc.png)
![thirdquartile=2.855](https://img.qammunity.org/2020/formulas/mathematics/college/ajsmtlata1rq3sdeiw1jyfw8vddhqk484c.png)
(5) Draw the median, first and third quartile and make a box. Then draw the smallest and largest values of the data and draw a line to conect the box. (Please see the picture below)