Tension in the string when the masses are released is 88.42 N
Acceleration of masses is
![\bold{a=2.578 m/sec^2}](https://img.qammunity.org/2020/formulas/physics/middle-school/7f29putkhytuagyxz8sth4c20a0exhtxde.png)
Explanation:
Given:
Mass ,m1 = 12
Mass , m2 = 7
g =
![9.8m/s^2](https://img.qammunity.org/2020/formulas/physics/high-school/serhnh5eiqbsyqt1ft67qqsl3ye0y6szut.png)
To Find :
Tension in the string=?
Acceleration of masses=?
Solution:
For mass M_1
--------------------(1)
For mass M2
---------------------(2)
Adding equation (1) and (2)
![(M_1+M_2)a=(M_2-M_1)g](https://img.qammunity.org/2020/formulas/physics/middle-school/zkotxvqh5b8fpv11av77hp74vzgp2v34pt.png)
Finding Acceleration:
Acceleration is given by
![a=(M_2-M_1 )/(M_1+M_2) g](https://img.qammunity.org/2020/formulas/physics/middle-school/rv280wg4xszhzujirdwy7967whx71lu1ci.png)
Substituting the values,
![a=((12-7)(9.8))/((7+12))](https://img.qammunity.org/2020/formulas/physics/middle-school/lmka40vo4ksvm89r4w4shp8jn7su4xcoug.png)
![a=((5)(9.8))/(19)](https://img.qammunity.org/2020/formulas/physics/middle-school/98t8s62h5ssqie8sze2ouuzu8eux84fbcw.png)
![a=\frac {49}{19}](https://img.qammunity.org/2020/formulas/physics/middle-school/oagnsegf3g60w69d69fqizyv8t2de547uw.png)
![a=2.578 m/sec^2](https://img.qammunity.org/2020/formulas/physics/middle-school/rx865p56879pjndkmzy3g3yzf4dz6mqiq8.png)
Finding Tension:
From Equation 1
![M_1 a=T-M_1 g](https://img.qammunity.org/2020/formulas/physics/middle-school/isddp0emob3b8iy0hk4ykyumjremv5e1o0.png)
Tension can be
![T=M_1 a+M_1 g](https://img.qammunity.org/2020/formulas/physics/middle-school/rwvkwxevw2f81ip3xed1cfqvb4bcpizzkf.png)
T=(7)(2.578) + 7(9.8)
T=(17.99)+(68.6)
T=86.59 N