Answer:
29\°c
Step-by-step explanation:
We need to define a couple of properties
![T_f = 305KP= 1atm\\v=16.27*10^(-6)m^2/s\\k=0.02658W/mK\\Pr=0.707](https://img.qammunity.org/2020/formulas/engineering/college/yvxuj5k3dy0ikit0hhxvtefd3d92hl0y6h.png)
For this problem I took Steady-state conditions with isothermal temperature in
![T_s](https://img.qammunity.org/2020/formulas/engineering/college/rrd7hzv3tlbpdzopuymnk7bl1i6ldwtwkq.png)
As well as a flow turbulent over the wall and negligible heat transfer into the building.
We start making a energy balance on the wall,
![E'_(in)-E'_(out)=0](https://img.qammunity.org/2020/formulas/engineering/college/b5jw62j0pj6lntpgsnis8ulukpzdmhsyxk.png)
![-q'_(cv)+(\alpha_S G_S-E_S)L=0](https://img.qammunity.org/2020/formulas/engineering/college/q3mkjk392n3ap9ds80rrg1jzjqi9v3vh49.png)
![-\bar{h}_L L(T_s-T_(\infty))+(\alpha_S G_S - \epsilon \sigma T_s^4)L = 0](https://img.qammunity.org/2020/formulas/engineering/college/an8f7c3p6x4tti6dwoiivipllqla3vqdzv.png)
Again, assuming fully turbulent flow over the leng of the wall,
![\bar{Nu}_L = \frac{\bar{h}_L}{k} = 0.037 Re_L^(4/4) Pr^(1/3)](https://img.qammunity.org/2020/formulas/engineering/college/7en5f0jfcpn737fbdplk3adl5qbzfz6nla.png)
![Re_L = u_(\infty)(L)/(v) = 4.47*(10)/(16.27*10^(-6))= 2.748*10^6](https://img.qammunity.org/2020/formulas/engineering/college/dimxzyt0ccd6uc4c17e5cwif85r4qbx7k2.png)
![\bar{h}_L = (0.02658/10)0.037(2.748*10^6)^(4/5)(0.707)^(1/3)=12-4W/m^K](https://img.qammunity.org/2020/formulas/engineering/college/8abxtj7l8b707cryog73w15ry9c47dsw6y.png)
Substituting to fin
![T_s,](https://img.qammunity.org/2020/formulas/engineering/college/g0pd7sd91hmxu75mix01ciyh45tiyydkc9.png)
![-12.4W/m^2*10m[T_s-(32.2+273)]K+[1*400W/m^2-0.93*5.67*10^(-8)W/m^2.K^4T_s^4]*10m=0](https://img.qammunity.org/2020/formulas/engineering/college/oc0thyjbtlkq536pkmx5cerdpgan9p3izw.png)
![T_s=302.2K=29\°c](https://img.qammunity.org/2020/formulas/engineering/college/7sp4izn4k6b5w1rwrij2lr9bc643r6q4kv.png)