51.3k views
11 votes
Express the given complex number (-3) in the polar form.​

1 Answer

5 votes

Answer:

Given, complex number is -3.

Let r cos θ = -3 …(1)

and r sin θ = 0 …(2)

Squaring and adding (1) and (2), we get

r^2cos^2θ + r^2sin2θ = (-3)^2

Take r2 outside from L.H.S, we get

r^2(cos^2θ + sin^2θ) = 9

We know that, cos^2θ + sin^2θ = 1, then the above equation becomes,

r^2 = 9

r = 3 (Conventionally, r > 0)

Now, subsbtitute the value of r in (1) and (2)

3 cos θ = -3 and 3 sin θ = 0

cos θ = -1 and sin θ = 0

Therefore, θ = π

Hence, the polar representation is,

-3 = r cos θ + i r sin θ

3 cos π + 3 sin π = 3(cos π + i sin π)

Thus, the required polar form is 3 cos π+ 3i sin π = 3(cos π+i sin π)

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Hope It's Helpful.....:)

User Mike Chen
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories