Answer:
![\alpha =-2.2669642*^(-10)rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/xrslevr0j41pfo1rml14jyorrstftfatl3.png)
Step-by-step explanation:
Angular acceleration is defined by
![\alpha =(\Delta \omega)/(\Delta t)=(\omega_f-\omega_i)/(\Delta t)](https://img.qammunity.org/2020/formulas/physics/college/sygsgsshbe99w6gbq4injogf7lykrbrjmg.png)
Angular velocity is related to the period by
![\omega=(2\pi)/(T)](https://img.qammunity.org/2020/formulas/geography/high-school/2bvenhnyw6np3ujzywcg1o9i3kotocqdh6.png)
Putting all together:
![\alpha =((2\pi)/(T_f)-(2\pi)/(T_i))/(\Delta t)=(2\pi)/(\Delta t)((1)/(T_f)-(1)/(T_i))](https://img.qammunity.org/2020/formulas/physics/college/9rbww1cmwzcoxq3udqla2zsxmcl0sxbqjq.png)
Taking our initial (i) point now and our final (f) point one year later, we would have:
![\Delta t=1\ year=(365)(24)(60)(60)s=31536000 s](https://img.qammunity.org/2020/formulas/physics/college/474esupik2qscm0apg19izxc3gic61xn1b.png)
![T_i=0.0786s](https://img.qammunity.org/2020/formulas/physics/college/wzv93918qi94vmzebd5sqyqmqt5684byu6.png)
![T_f=0.0786s+7.03*10^(-6)s](https://img.qammunity.org/2020/formulas/physics/college/5ea9mqf3sitrv50m3lvhdie32wcy3yffju.png)
So for our values we have:
![\alpha =(2\pi)/(\Delta t)((1)/(T_f)-(1)/(T_i))=(2\pi)/(31536000s)((1)/(0.0786s+7.03*10^(-6)s)-(1)/(0.0786s))=-2.2669642*^(-10)rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/cgi1r8zk13es500o31uk1ajgmhva7fe21p.png)
Where the minus sign indicates it is decelerating.