126k views
5 votes
Find the square roots of 119 + 120i algebraically.

Let ???? = p + qi be the square root of 119 + 120i. Then
????^2 = 119 + 120i
and
(p + qi)2 = 119 + 120i.
a. Expand the left side of this equation.
b. Equate the real and imaginary parts, and solve for p and q.
c. What are the square roots of 119 + 120i?

1 Answer

2 votes

Answer:

Explanation:

Given

z=119+120 i

Let
√(119+120 i)=p+iq

Squaring both sides


119+120 i=p^2-q^2+2ipq

Comparing real and imaginary part

Re(LHS)=Re(RHS)


119=p^2-q^2-----------1

comparing Im(LHS)=Im(RHS)

120=2pq


q=(60)/(p)

Substitute q in 1


119=p^2-((60)/(p))^2


p^4-119p^2-(68)^2=0

Let
x=p^2


x^2-119x-4624=0


x=(119\pm √(119^2+4* 4624))/(2)


x=(119\pm 180.71)/(2)

we take only Positive value because
p^2=x

x=149.85


p^2=149.85

thus
p=\pm 12.24


q=\mp 4.90

thus
√(119+120 i)=\pm (12.24+i 4.90)

User ITrout
by
5.7k points