Answer:
![1+√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d60oetw4dy6uqujrcirrc9b8780yzn8f8y.png)
Explanation:
If a quadratic equation is defined as
.... (1)
then the quadratic formula is
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/mdgu1o7rsw0bnmbbc42pvyi37r641y1reu.png)
The given quadratic equation is
![0=-x^2+2x+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4b2pxue34vq2ya0jnxirv2sutxm77t3g8m.png)
It can we written as
.... (2)
On comparing (1) and (2) we get
![a=-1,b=2,c=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lfv4kotmlpulhf4cfu34t4kje26drwp6p1.png)
Substitute these values in the quadratic formula.
![x=(-2\pm √(2^2-4(-1)(1)))/(2(-1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ug2au0f33kvvbameanpnucempn8lt97svt.png)
![x=(-2\pm √(4+4))/(-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2aqbvlvn0br48x4qzi5s5rkfrwxl8av6vn.png)
![x=(-2\pm √(8))/(-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/is7fgvfjljemuxsnosn2531e6qnu168u43.png)
![x=(-2\pm 2√(2))/(-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t3pj7dec0j1hyljrfe0agp237om70za4oc.png)
Taking out common factors.
![x=(-2(1\pm √(2)))/(-2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/550q59lg8dnhrl53lupjg38t5aups7qeyc.png)
![x=1\pm √(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/km5tx58bo27jolcubnr2y25a7a65csx3x4.png)
Two roots are
and
![x=1-√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pfchdqqff8b92c187ckjws0ytxsm6j7e5l.png)
We know that
![√(2)=1.41](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ok6739t37qdujwu0wvd4ooochas2m8fgag.png)
So
![1<√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gv4yhdtulk2koxf9wz7y1ay218z73umaoe.png)
Therefore, root
is positive and
is negative.