Answer:
The dimensions of the rectangular volleyball court are 60 ft x 30 ft
Explanation:
Let
x ----> the length of rectangular volleyball court
y ---> the width of the rectangular volleyball court
we know that
The area of the rectangular volleyball court is equal to
![A=xy](https://img.qammunity.org/2020/formulas/mathematics/middle-school/92fnf84e6el1b8awjzmjadlyo48pjjzxuy.png)
![A=1,800\ ft^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rplnylilvakdaxoxga2bxjinthwvta1em6.png)
so
----> equation A
-----> equation B
substitute equation B in equation A
![1,800=(2y)y](https://img.qammunity.org/2020/formulas/mathematics/middle-school/969tfqvilfro3whc0386x6rf6vzu6cxz62.png)
![1,800=2y^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hwkckhnyj27s0nnm7zetqsf4c8smmgvlsz.png)
Solve for y
Simplify
![900=y^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6m2g3jusmr3zu0eypdocnnxlmydszli2hn.png)
take square root both sides
![y=30\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4pf5xclt68ehy8x11w41gch6m2gtuvw082.png)
Find the value of x
![x=2y](https://img.qammunity.org/2020/formulas/mathematics/high-school/r0g65nto9t7i4uk52l4mqnpo11p6y30wul.png)
substitute the value of y
![x=2(30)=60\ ft](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2t8zwzll19ztyzg0ckkhe0hq10bvm9zk26.png)
therefore
The dimensions of the rectangular volleyball court are 60 ft x 30 ft