93.9k views
8 votes
Find the second derivative of: y = sqrt(x + 4)/4; x ≥ -4.

User Jottos
by
4.0k points

2 Answers

7 votes

Answer:
-\frac1{16}(x+4)^(-\frac32) ; x ≥ -4.

Step-by-step explanation:

Given:
y=(√(x+4))/(4) ; x ≥ -4.

First derivative =
(dy)/(dx)=\frac12*((x+4)^(-\frac12))/(4)
[ (d(x^n))/(dx)=nx^(n-1) ]


=(1)/(8)(x+4)^(-\frac12) ; x ≥ -4.

Second derivative=
(d^2y)/(dx^2)=(d)/(dx)(\frac18(x+4)^(-\frac12))


=\frac18*-\frac12(x+4)^(-\frac12-1)\\\\=-\frac1{16}(x+4)^(-\frac32)

The second derivative of y =
-\frac1{16}(x+4)^(-\frac32) ; x ≥ -4.

User Monadoboi
by
4.5k points
9 votes

Answer:
\frac{-1}{16(x+4)^{(3)/(2)}}

Step-by-step explanation:

Given


y=(√(x+4))/(4)\\\text{differentitate w.r.t x}\\\frac{\mathrm{d} y}{\mathrm{d} x}=(1)/(4)* (1)/(2√(x+4))=(1)/(8√(x+4))


\frac{\mathrm{d} y}{\mathrm{d} x}=((x+4)^(-0.5))/(8)

Again differentiate for the second derivative


\frac{\mathrm{d^2} y}{\mathrm{d} x^2}=(1)/(8)* \frac{-1}{2(x+4)^{(3)/(2)}}=\frac{-1}{16(x+4)^{(3)/(2)}}

User Cybergoof
by
4.5k points