Answer:
![-(189)/(208)](https://img.qammunity.org/2022/formulas/mathematics/college/s5dkggrweibzcf5m2epgqqyyfrwc431wl4.png)
Explanation:
Given
![\sin x=(8)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/bbxemx06em573hv052u5zdn0f9iuf89zjz.png)
x lies in the second quadrant where sin and cosec is positive and rest trigonometric functions are negative
so,
![\cos x=-√(1-sin ^2 x)\\\cos x=-\sqrt{1-((8)/(10))^2}=-\sqrt{(36)/(100)}\\\cos x=-\sqrt{(6)/(10)}](https://img.qammunity.org/2022/formulas/mathematics/college/7lp4042lgz03rxp6512ycc86yrz3zpmwzl.png)
![\tan x=(\sin x)/(\cos x)=-(4)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/3y0xt8n1fchefy1ywzgdxwbpxukweezhrx.png)
similarly,
![\tan y=-(12)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/wb19pdpj2dekzxafwuzu4gw5wrux1on3o3.png)
Also, y lies in 4 th Quadrant where cos and sec is positive and rest trigonometric functions are negative
![\sec y=√(1+\tan ^2y)=\sqrt{1+(-(12)/(5))^2}\\\sec y=(13)/(5)\\\cos y=(5)/(13)\\\sin y =(\tan y)/(\cos y)=-(12)/(13)](https://img.qammunity.org/2022/formulas/mathematics/college/l24yr6v515oau39fhsanzta67tyxpbw6bh.png)
Now putting the values
=
![(\cos x \cos y+\sin x\sin y)/(\tan x-\tan y)=(((-6)/(10))((5)/(13))+((8)/(10))((-12)/(13)))/(((-8)/(6))-((-12)/(5)))\\(\cos x \cos y+\sin x\sin y)/(\tan x-\tan y)=((-126)/(130))/((16)/(15))=-(189)/(208)](https://img.qammunity.org/2022/formulas/mathematics/college/wmoynktrrs9d2u73ksq2cltkrhqaqpjvv5.png)