182k views
24 votes
Given sin x = 8/10, 90° <x< 180° and tan y = -12/5, 270° ≤y≤ 360°. Without finding the values for angle x and y, determine cos x cos y + sin x sin y / tan x - tan y.​​

Given sin x = 8/10, 90° <x< 180° and tan y = -12/5, 270° ≤y≤ 360°. Without finding-example-1
User JohnXF
by
4.5k points

1 Answer

8 votes

Answer:
-(189)/(208)

Explanation:

Given


\sin x=(8)/(10)

x lies in the second quadrant where sin and cosec is positive and rest trigonometric functions are negative

so,
\cos x=-√(1-sin ^2 x)\\\cos x=-\sqrt{1-((8)/(10))^2}=-\sqrt{(36)/(100)}\\\cos x=-\sqrt{(6)/(10)}


\tan x=(\sin x)/(\cos x)=-(4)/(3)

similarly,
\tan y=-(12)/(5)

Also, y lies in 4 th Quadrant where cos and sec is positive and rest trigonometric functions are negative


\sec y=√(1+\tan ^2y)=\sqrt{1+(-(12)/(5))^2}\\\sec y=(13)/(5)\\\cos y=(5)/(13)\\\sin y =(\tan y)/(\cos y)=-(12)/(13)

Now putting the values

=
(\cos x \cos y+\sin x\sin y)/(\tan x-\tan y)=(((-6)/(10))((5)/(13))+((8)/(10))((-12)/(13)))/(((-8)/(6))-((-12)/(5)))\\(\cos x \cos y+\sin x\sin y)/(\tan x-\tan y)=((-126)/(130))/((16)/(15))=-(189)/(208)

User Pconrey
by
4.1k points