Answer:
A) 7
B) 2.588
C) 2.3151
Step-by-step explanation:
We are given the following data set:
2, 5, 6, 7, 9
Formula:
![Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ymj7hkaoybp2d6028x10bcvj2ee8tulybn.png)
Mean =
![\displaystyle(29)/(5) = 5.8](https://img.qammunity.org/2020/formulas/mathematics/college/n69y631p3rapb3uojxx245uq54sqgj18tl.png)
a) Range
= Highest value - Lowest Value = 9 - 2 = 7
b) Sample standard deviation
![\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2o7xq72z8j6s1y5itzzxvj4ukg15l0zted.png)
where
are data points,
is the mean and n is the number of observations.
Sum of squares = 14.44 + 0.64 + 0.04 + 1.44 + 10.24 = 26.8
![SS.D = \sqrt{(26.8)/(4)} = 2.588](https://img.qammunity.org/2020/formulas/mathematics/college/qxp4udd56hio1mm0124ojsye5ljnjr3wzq.png)
c) Population standard deviation
![\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n}}](https://img.qammunity.org/2020/formulas/mathematics/college/h5gt9lake3nonx3v63qaugqa4uttl72l3g.png)
where
are data points,
is the mean and n is the number of observations.
Sum of squares = 14.44 + 0.64 + 0.04 + 1.44 + 10.24 = 26.8