Answer : The value of x and y are, 64° and 50° respectively.
Step-by-step explanation :
As we know that, ABCD is a trapezium and AB || CD. So, the sum of opposite angles are 180°
![\angle A+\angle D=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eydfnj2z4sjdhis2u095hjn9z7nn9k6941.png)
Given:
![\angle A=2x^o\\\\\angle D=(x-12)^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pkese4cs8oe7n8c0xaxcoukd4dune6i7jg.png)
![\angle A+\angle D=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eydfnj2z4sjdhis2u095hjn9z7nn9k6941.png)
![2x^o+(x-12)^o=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v1d69a7e1gt3mrng765jcr6q4b4zjrjnd9.png)
![3x^o-12^o=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w9y6p4u1rlu3o9r2zy2mdb5ewk10xxyq5q.png)
![3x^o=192^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4lehyjg6oeg9rha7d737mcp2ho0s24yjf4.png)
![x=64^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5jfbou27kbuwkzc7fjt6n5wib3762ql836.png)
and,
Given:
![\angle B=3y^o\\\\\angle C=(y+20)^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4hgjdgjt2240yh4hok37nrs404pjelt5my.png)
![\angle A+\angle D=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eydfnj2z4sjdhis2u095hjn9z7nn9k6941.png)
![3y^o+(y+20)^o=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7edkxary5u2h7k0imt8uyyz8252hfv4151.png)
![4y^o+20^o=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/opwkj0qzjimvc50myemvdnfyoarcqpwzp4.png)
![4y^o=200^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jxsr5nv6b9jf7wrecouumeee29zzi9da6s.png)
![y=50^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ved2nb3kubemrf07v5hirgpmouh8ibavwc.png)
Thus, the value of x and y are, 64° and 50° respectively.