Answer:
a) Mean = 1205
Standard Deviation = 2.89
b) P( 1192 < x < 1204) = 0.4
Explanation:
We are given the following information in the question:

a = 1200, b = 1210
We are given a uniform distribution.
a) Mean:

Standard Deviation:

b) P( 1192 < x < 1204)
![=\displaystyle\int_(1192)^(1204) f(x) dx\\\\=\displaystyle\int_(1200)^(1204) (0.1) dx\\\\=0.1[x]_(1200)^(1204) = (0.1)(1204-1200) = 0.4](https://img.qammunity.org/2020/formulas/mathematics/college/dhedffsz8nt36259y0aosn2me2wc9dy1v0.png)