Answer:
0xFEE₁₆ = 7756₈
Explanation:
Convert the hexadecimal number to decimal first
0xFEE
E = 14
F = 15
Then convert them to binary
![(14)/(2)=7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b8bmbntukab8lw29z75hl46zvspi12l8qc.png)
Remainder = 0
![(7)/(2)=3](https://img.qammunity.org/2020/formulas/mathematics/college/1on9ual0qbw1sn3mm754wh636as1mjpgkn.png)
Remainder = 1
![(3)/(2)=1](https://img.qammunity.org/2020/formulas/mathematics/college/qpjqh5otek053895kchtixfihai6swtrcc.png)
Quotient = 1
Remainder = 1
![(15)/(2)=7](https://img.qammunity.org/2020/formulas/mathematics/college/yn2pchqb3bs92ew6orqdnlwadmijvub68p.png)
Remainder = 1
![(7)/(2)=3](https://img.qammunity.org/2020/formulas/mathematics/college/1on9ual0qbw1sn3mm754wh636as1mjpgkn.png)
Remainder = 1
![(3)/(2)=1](https://img.qammunity.org/2020/formulas/mathematics/college/qpjqh5otek053895kchtixfihai6swtrcc.png)
Quotient = 1
Remainder = 1
0 F E E
0000 1111 1110 1110
Take groups of three
and multiply with
where n is the place of the digit
111 111 101 110
4,2,1 4,2,1 4,2,1 4,2,1
4+2+1 4+2+1 4+0+1 4+2+0
7756
So, 0xFEE₁₆ = 7756₈